STATISTICS (C) UNIT 1 TEST PAPER 1

1.	The random Calculate (variable \overline{X} i) the expe ii) $P(X \le 3)$	has the geome ctation of X,),	etric distribut	ion Geo(0·	.75).		-	[1] [3]
2.	A histogram	is to be dra	wn to represe	nt the follow	ing groupe	ed continu	lous da	ta:	
	Group Frequency	0 - 10 2x	10 - 20 $3x$	20 - 25 5 <i>x</i>	25 6x	30 ¢	30 - 50 2x	50 - 1	100
	The '10 - 20 (i) the heigh (ii) the total In the case w	bar has he at of the '20 area under when $x = 10$	ight 6 cm and - 25' bar, the histogram , <i>sketch</i> a cum	width 4 cm. ulative frequ	Calculate	n of this d	lata.		[3] [2] [2]
3.	The 12 letter out on a tabl Find the num (i) the 12 ca (ii) a pair of The 12 cards that the letter	rs of the wo e. nber of dist ards can be cards can b s are shuffle rs on the tw	rd INDEPEN inguishable w arranged in a s be chosen fror ed again and tw yo cards are th	DENCE are ays in which straight line, n the 12. wo cards are e same.	written on picked out	cards, wh	nich are m. Fin	shuffled and	d then laid [2] [2] pility [3]
4.	The marks, 2 42 67 (i) Write d (ii) Given t of (iii) One can differs fro The marks o (iv) Write d	x out of 100 5 19 2 44 7 70 own the me hat $\Sigma x = 10$ 5 the 30 man indidate is compared f another grown two br	b, scored by 30 20 21 47 51 71 73 edian mark. 500 and Σx^2 = ks. hosen at random n by more that coup of 30 car- ief compariso	candidates i 23 25 56 57 75 77 = 102 400, ca om. Find the n the standar ididates had in ns between t	in an exam 31 60 7 81 Iculate the e probabilit d deviatior mean 49 ar he two gro	ination w 37 61 82 mean and ty that thi n d standar pups.	vere as f 39 62 98 d the st as candi rd devia	follows: 41 65 100 andard devia date's mark ation 17.5.	[1] ation [4] [2] [2]
5.	A die is made in the form of a square-based pyramid. When it is thrown onto a table, the probability that it lands 'vertex up' (i.e. with the square face in contact with the table) is 0.55. The die is thrown 30 times. Find the probability that it lands vertex up (i) exactly 17 times, (ii) between 15 and 20 times (inclusive), (iii) more than 10 times. [6] Three identical dice of this type are thrown together 10 times. Find the probability that on all of these 10 occasions at least one of the dice lands vertex up. [4]							e probability on all of	
6.	The distribut x P(X = x) The random (i) Tabulate	tions of two 0 x) 0.6 variable Z the probab	independent 1 2 0.3 $0.1is defined to bility distribution$	discrete rand P(the the sum of on for Z.	$ \begin{array}{c} y\\ Y=y\\ \end{array} $ i one observ	les X and 0 0.625 vation fro	<i>Y</i> are g 1 0.375 om <i>X</i> an	given in the t ad one from	ables: <i>Y</i> . [4]

	(ii) Calculate $E(Z)$.										[2]
	(iii) Calculate (a) E(2	Z ²), (1	b) Var (Z).						[4]	
7.	The table shows the nu	mbers	of cars a	and vans	s in a co	mpany	's fleet l	having r	egistrat	ions wi	th
	the prefix letters shown	1.									
	Registration letter	K	L	M	N	P	R	S	Т	V	
	Number of cars (x)	6	7	9	11	15	14	12	10	7	
	Number of vans (y)	8	10	14	13	13	15	14	9	8	
	(i) Plot a scatter graph of this data, with the number of cars on the horizontal axis and the										
	number of vans on the vertical axis. [3]								[3]		
	(ii) Obtain the coordinates of a point which must lie on both the regression line of y on x and										
	that of x on y . [2]										
	(iii) If there were 4 <i>J</i> -registered cars, estimate the number of <i>J</i> -registered vans. [1]										
	Given that $\sum x^2 = 1001$, $\sum y^2 = 1264$ and $\sum xy = 1106$,										
	(iv) calculate the product-moment correlation coefficient between x and y. Give a brief										
	interpretation of your answer. [3]										
	(v) Find, in the form $y = ax + b$, an equation of the regression line of y on x. Use this line to										
	obtain an improved ans	swer to	part (iii).							[4]

STATISTICS 1 (C) TEST PAPER 1 : ANSWERS AND MARK SCHEME

1.	(i) $E(X) = 1 \div p = \frac{4}{3}$ (ii) $P(X \le 3) = \frac{3}{2} \pm \frac{1}{4} \times \frac{3}{4} \pm \frac{1}{2} \times \frac{3}{4} = \frac{63}{4} = 0.984$	B1 M1 A1 A1	4
	ie get it or not get it then get it or not get it twice then get it		·
2.	(i) $3x$ corresponds to 24 cm ² , so $5x$ corresponds to 40 cm ²	M1 A1	
	Width = 2 cm, so height = 20 cm	A1	
	(ii) Area = $19x = 19 \times 8 = 152 \text{ cm}^2$	M1 A1	
	Graph sketched	B2 7	
3.	(i) $12! \div (2! \times 3! \times 4!) = 1663200$	M1 A1	
	(ii) 2 the same : 3 ways 2 different : 6C2 = 15 ways Total : 18 Either 2E's or 2 N's or 2 D's	M1 A1	
	$\frac{4}{12} \times \frac{3}{11} + \frac{2}{12} \times \frac{1}{11} + \frac{3}{12} \times \frac{2}{11} = \frac{10}{66} = 0.152$	B1M1 A1	7
4.	(i) Median = 56.5 (ii) Mean = $1600 \div 30 = 53$	B1; B1	
	Var = $102400/30 - (\frac{1600}{30})^2 = 568.89$, so s.d. = 23.9	M1 A1 A1	
	(iii) Range is 29.5 to 77.2 10 outside this, so prob. = $\frac{1}{3}$	M1 A1	
	(iv) Second group was less good overall but more consistent	B1 B1 9	
5.	(i) $X \sim B(30, 0.55)$: $P(X \le 17) - P(X \le 16) = 0.6408 - 0.4975 = 0.143$	M1 A1	
	(ii) $P(X \le 20) - P(X \le 14) = 0.9306 - 0.2309 = 0.700$	M1 A1	
	(iii) $P(X > 10) = 1 - P(X \le 10) = 1 - 0.0138 = 0.986$	M1 A1	
	P(at least one in three vertex-up) = $1 - 0.45^3 = 0.9089$	M1 A1	
	Required probability = $0.9089^{10} = 0.385$	M1 A1 10	

PMT

6. (i) z 0 1 2 3 P(Z=z) $\frac{3}{8} \frac{33}{80} \frac{7}{40} \frac{3}{80}$	M1 A1 A1 A1
(ii) $E(Z) = \frac{7}{8}$ ie $\Sigma(z \times P(Z=z))$	M1 A1
(iii) (a) $E(Z^2) = {}^{29}\!/_{20}$ (b) $Var(Z) = {}^{29}\!/_{20} {}^{49}\!/_{64} = {}^{219}\!/_{320} = 0.66$	84 M1 A1 M1 A1 10
7. (i) Scatter graph showing moderate positive correlation	B3
(ii) Means of x and y: $(10.1, 11.6)$	M1 A1
(iii) 7 or 8	B1
(iv) $\Sigma x = 91$, $\Sigma y = 104$	B1
$S_{xx} = 80.89, S_{yy} = 62.22, S_{xy} = 54.44 \qquad r = 0.767$	M1 A1
which confirms the moderate positive correlation	B1
(v) $y - 11.6 = 0.673(x - 10.1)$ $y = 0.673x + 4.79$	M1 A1 A1
When $x = 4$, $y \approx 7.5$, confirming 7 or 8	B1 13